sábado, 25 de fevereiro de 2012
Os genes não definem nosso destino.
Jim Springer e Jim Lewis eram gêmeos idênticos americanos que foram adotados por famílias diferentes ao nascer. Passaram a infância e a juventude separados, casaram e descasaram, e se reencontraram aos 39 anos de idade - apenas para descobrir que eram realmente iguaizinhos. "Ambos se casaram com mulheres chamadas Linda, divorciaram-se e casaram-se pela segunda vez com mulheres chamadas Betty. Um deu a seu filho o nome de James Allan, o outro deu a seu filho o nome de James Alan, e ambos tiveram cães chamados Toy", observou Thomas Bouchard, psicólogo britânico da Universidade de Minnesota, em 1979, quando ele entrou em contato com os Jims. Essa história inacreditável faz parte do Projeto dos Gêmeos de Minnesota, organizado por Bouchard, que há décadas estuda centenas de gêmeos para estabelecer elos entre traços psicológicos e a genética. (Nesse caso, gêmeos idênticos separados ao nascimento são os favoritos dos pesquisadores: como eles compartilham os mesmos genes, mas não foram criados juntos, é mais fácil separar o que vem do DNA e o que vem do ambiente.) Além dos dois Jims, o estudo encontrou diversos exemplos impressionantes. Como o par de gêmeos que foi criado separadamente, mas lia revistas de trás para a frente, dava descarga antes de usar o banheiro, e gostava de espirrar em elevadores. Ou as duas gêmeas que entravam no mar de costas e apenas até a altura dos joelhos. Lendo essas anedotas, fica impossível não acreditar que o destino está no nosso DNA - e que as decisões que tomamos ao longo da vida pouco importam, frente ao poder dos genes. Mas será que somos realmente tão impotentes em determinar nosso futuro?
quinta-feira, 23 de fevereiro de 2012
Uma história de 400 anos.
O MUNDO INVISÍVEL DO "MUITO pequeno".
A história da ciência pode ser lida como uma aventura de exploração desses mundos invisíveis, revelados por meio do desenvolvimento de técnicas e tecnologias de observação. Mesmo que o uso de lentes para ampliar imagens já fosse explorado desde tempos antigos, o microscópio em sua forma moderna foi inventado provavelmente entre 1590 e 1610 pelos holandeses Hans e Zacharias Jannsen, pai e filho. Em torno de 1600, eles construíram um instrumento com duas lentes arranjadas em um tubo móvel. O grande astrônomo Johannes Kepler descreve, em 1611, um sistema semelhante ao dos Jannsen, mas com uma lente convexa na extremidade ocular do instrumento.
A invenção do microscópio revelou novos e estranhos mundos, invisíveis aos nossos olhos. No final do século 17, cientistas já haviam descoberto células, capilares, corpúsculos sanguíneos, protozoários e bactérias. O biólogo holandês Anton van Leeuwenhoek, considerado o fundador da microbiologia, baseou suas incríveis descobertas em lentes de altíssima qualidade que ele mesmo produziu, obtendo ampliações de 275 vezes. Hoje, é possível obtermos ampliações de até mil vezes com microscópios ópticos, baseados na luz visível.
O limite vem do fato de que a imagem vista no microscópio óptico é obtida pela reflexão de uma onda de luz sobre o objeto de estudo. Para que detalhes do objeto sejam revelados, ele não pode ser menor do que o comprimento de onda da luz visível (a distância entre duas cristas consecutivas). Imagine um rochedo na beira do mar. Quando o mar está calmo, vemos 1 m do rochedo despontando sobre a superfície. Ondas com alturas menores do que um metro são refletidas pelo rochedo e passam ao seu redor. Ondas bem maiores do que 1 m "ignoram" o rochedo. Algo semelhante ocorre quando ondas de luz chocam-se com um objeto. Caso o objeto seja menor do que o comprimento de onda da luz, ele será "ignorado" pela onda.
Ondas de luz visível têm comprimentos de onda entre 400 e 700 nanômetros (1 nanômetro -nm- é um bilionésimo de 1 metro; multiplicado 101 mil vezes, um objeto com 500 nm de tamanho aparecerá como um objeto de 0,5 milímetro). Com técnicas sofisticadas de visualização, é possível ver objetos com 200 nm. A visualização de objetos ainda menores tem de ser feita por intermédio de outros tipos de microscópio.
Em 1924, o físico francês Louis de Broglie sugeriu que, tal como a luz, o elétron e outras partículas subatômicas também podem ser interpretados como ondas. Essa estranha propriedade do elétron, conhecida como a dualidade partícula-onda, possibilitou o desenvolvimento de microscópios eletrônicos.
Do mesmo modo que microscópios ópticos usam ondas de luz focadas por meio de lentes, o microscópio eletrônico usa ondas eletrônicas focadas por meio de campos eletromagnéticos. Devido ao curtíssimo comprimento de onda do elétron em movimento, microscópios eletrônicos podem chegar a ampliações mil vezes maiores do que microscópios ópticos, revelando estruturas com dimensões de 0,2 nm. Microscópios eletrônicos de alta voltagem podem revelar estruturas em nível atômico.
Em 1986, Gerd K. Binnig e Heinrich Rohrer dividiram o Prêmio Nobel de Física pela invenção do microscópio de escaneamento por tunelamento. Esse instrumento pode revelar imagens tridimensionais da superfície de materiais em nível atômico, possibilitando a visualização e a manipulação individual de átomos! Nada mau para uma história de apenas 400 anos.
O Dia em que a Terra incendiou-se.
Um asteróide destruiu um mundo e abriu caminho para outro
Muitos sabem que o impacto de um asteróide ou cometa foi a possível causa do fim repentino da época dos dinossauros. Não se sabe com exatidão, porém, como se deu a extinção desses animais e de muitas outras espécies, nem como os ecossistemas reconstituíram-se depois do choque. O cataclisma ultrapassou em muito os limites das agressões que os seres vivos normalmente têm de superar. O asteróide ou cometa cortou o céu cerca de quarenta vezes mais rápido que a velocidade do som. Era tão grande que, ao tocar o solo, sua borda superior estava além da altitude de um avião de cruzeiro (10 km). A explosão produzida no impacto foi o equivalente a 100 trilhões de toneladas de TNT, a maior liberação de energia jamais vista no planeta nos últimos 65 milhões de anos.
Os vestígios desta colisão jazem sob as florestas tropicais de Yucatán, as ruínas maias de Mayapán, a vila portuária de Progreso e as águas do Golfo do México. A cratera, chamada de Chicxulub depois do estabelecimento de vilas maias na área, tem aproximadamente 180km de diâmetro e é circundada por uma falha circular de 240km, aparentemente produzida quando a crosta reverberou com a onde de choque produzida pelo impacto.
Chicxulub |
Às vezes, a ciência supera a ficção científica em sua capacidade de espantar e surpreender, como no caso do impacto que destruiu um mundo e abriu caminho para outro. Entretanto, estudos realizados durante os últimos anos sugerem que o aniquilamento das espécies não foi conseqüência direta e imediata do impacto, e sim de uma variedade de efeitos severos e complexos sobre o ambiente, que espalhou a devastação no mundo inteiro. Uma das forças mais destrutivas foi o incêndio de varias áreas de floretas continentais. O fogo destruiu habitats importantes, desmantelou a base das cadeias alimentares continentais e contribuiu para o declínio da fotossíntese.
Além de devastas as florestas, os incêndios causaram severa poluição do ar. A fuligem e a poeira geradas no impacto toldaram o céu de todo o planeta, tornando-o impermeável à luz solar. Cálculos sugerem que a superfície terrestre ficou escura como uma caverna, embora ainda não se saiba a dimensão exata desta escuridão. Plantas fotossintetizantes morreram e cadeias alimentares entraram em colapso, mesmo em áreas não atingidas pelos incêndios, como o mar. Esse período tem sido comparado a um “inverno nuclear”, um período de frio que alguns analistas sugerem que adviria após uma explosão nuclear. [...] A poeira levou meses para assentar, provavelmente caindo na forma de uma chuva azulada semelhante à chuva de cinzas azul que sobrevém às erupções vulcânicas atuais [...]
O mundo após o impacto de Chicxulub, tornou-se diferente até mesmo nos cheiros e nos sons. Ao ouvir gravações de sons de pássaros, insetos e macacos, somos como que magicamente transportados à Amazônia e a outras florestas tropicais atuais. Se tivéssemos gravados os sons do Cretáceo, ouviríamos os dinossauros movendo-se entre as folhagens e seus chamados de comunicação, além do zumbir de alguns insetos. Os mamíferos estariam relativamente silenciosos, esgueirando-se entre a vegetação , como fazem as toupeiras hoje. Nos meses após o impacto, o mundo tournou-se muito quieto. O ambiente era dominado apenas pelo som do vento, das correntezas e do cair da chuva. Aos poucos, insetos e, depois, mamíferos puderam novamente ser ouvidos. Centenas de anos ou, quem sabe, centenas de milhares de anos foram necessários para que os ecossistemas constituíssem novas e sólidas arquiteturas.
A diversidade da vida foi sua salvação. Apesar do desaparecimento de inúmeras espécies e incalculável quantidade de indivíduos, algumas formas de vida sobreviveram e proliferaram. O impacto inaugurou os novos nichos ecológicos para a evolução dos mamíferos, que levou ao desenvolvimento de nossa própria espécie. Nesse sentido, a cratera de Chicxulub foi o cadinho da evolução humana.
FONTE: David A. Kring e Daniel D. Durda. 2003. Scientific American 289(6): 70-77 ( Tradução e Adaptação de Amabis & Martho 2004)
sexta-feira, 10 de fevereiro de 2012
Assinar:
Postagens (Atom)